
DOCUMENT RESUME

ED 277 349

TITLE Technology Report.
INSTITUTION Mid-Continent Regional Educational Lab., Inc., Kansas

City, Mo.
Office of Educational Research and Improvement (ED),
Washington, DC.
30 Nov 85
14p.
Reports - Reseae6h/Technical (143)

IR 012 439

EDRS'PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Algorithms; Elementary Education; Field Tests;

*Problem Solving; *Quasiexperimental Design;
Reinforcement; Research Methodology; *Skill
Development; *Training Methods
*Conceptual Models; Likert Scales; *LOGO Programing
Language

ABSTRACT
In order to determine the extent to which the LOGO

programming language can be used as a reinforcer for general problem
solving ability, this field study used a production theory approach
to problem solving as a conceptual model, and then translated the
model into a LOGO oriented framework. The methodology tested the use
of an algorithm in a quasi-experimental fashion by presenting it to
students, 'and then determining the extent to which it increased their
ability to solve LOGO problems. Four subjects, one each from grades
4, 5, 6, and 8, were presented with standard LOGO problems. (All
students had received at least 4 hours of instruction in using LOGO
commands.) Students were then rated using a Likert scale. The results
indicate that a general problem solving algorithm does not
significantly change the problem solving ability of students as it
relates to LOGO problems, which implies that a "stronger" algorithm
approach should be developed for teaching problem solving for
different types of problems. However, the results also suggest ways
that LOGO problem solving techniques might generalize to more
specific algorithms because of LOGO's highly visual nature, recursive
features, and provision of immediate feedback. For the reinforcement
of these aspects, LOGO appears to be a highly useful teaching tool.
Five references are listed. (DJR)

-IDENTIFIERS

Reproductions supplied by EDRS are the best that can be made

from the original document.

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERICI

XThis document has been reproduced as
received from the person or organization
originating it.

0 Minor changes have been made to improve
reproduction quality.

Points of view or opinions stated in this docir
ment do not necessarily represent official
OERI position or policy.

TECHNOLOGY REPORT

Submitted to the Office of
Educational Research and Improvement

by
The Mid-continent Regional Educational Laboratory

November 30, 1985

2

This report was prepared by the Mid-continent Regional Educational
Laboratory, a not-for-profit educational laboratory. The activities
reported herein were performed pursuant to a contract from the National
Institute of Education, Department of Education. However, the opinions
expressed herein do not necessarily reflect the position or policy of the
National Institute of Education, and no official endorsement by the
National Institute of Education should be inferred.

INTRODUCTION

The purpose of this report is to summarize the findings of the field testing

efforts to determine the extent to which the programming language LOGO can be

used as a reinforcer for general problem solving ability. As described in the

Progress Report on Technology Activities submitted in December, 1984 therc is a

long standing debate among problem solving theorists as to the utility of general

verses specific problem solving methods (Poison and Jeffries, 1985).;

General problem solving techniques have their roots in the "weak" method

approach to information processing qnd from divergent-production theories of

cognition (Polson and Jeffries, p. 448 and p. 426). Specific problem qnlving

methods original from the "strong" method approach within information processing.

Weak verses strong methods differ primarily in terms of generalizability and

specifically.

Weak methods like those developed by Polya (1985) are algorithms with very

general components. For example, Polya's algorithm had four basic steps: 1)

understand the problem, 2) devise a plan, 3) carry out the plan and 4) look back.

The assumption underlying weak methods is that they are generalizable. That is,

Polya assumes that his four steps could bc applied to different types of problems

in mathematics, different types of problems in science, etc. The emphasis in weak

methods, then, is the transferability of the algorithms; within weak methods there

is very little specific content knowledge taught.

Strong methods, on the other hand, emphasize specificity the assumption

here is that for each problem there is highly specific declarative and procedural

knowledge necessary to solve the problem . To illustrate, consider the f ollowing

algorithm developed for a computer simulations program called ACT, Adaptive

Control of Thought (Anderson, 1983):

P1 IF the goal is to do an addition problem
THEN the subgoal is to itcrate through the columns of the problem.

P2 IF the goal is to iterate through the columns of an addition
problem
and the rightmost column has not been processed

THEN the subgoal is to iterate through the rows of that rightmost
column
and set the running total to 0.

P3 IF the goal is to iterate through the columns oil' an additional
problem
and a column has just been processed
and another column is to the left of this column

THEN the subgoal is to iterate through the row of this column to
the left
and set the running total to the carry.

P4 IF the goal is to iterate through the columns of an problem
and the rightmost column has not been processed
and there is a carry

THEN write out the Carry
and POP the goal.

P5 If the goat is to iterate through the columns of an addition
problem
and the last column has been processed
and there is no carry

THEN POP the goal.

P6 IF the goal is to iterate through the rows of a column
and the top row has not been processed

THEN the subgoal is to add the digit of the lower row to the
running total.

P8 IF the goal is to iterate through the rows of a column
and the last row has been processed
and the running total is a digit

THEN write the digit
and delete the carry
and mark the column as processed
and POP the goal.

P9 IF the goal is to iterate through the rows of a column
and the last row has been processed
and the running total is of the form "string digit"

THEN write the digit
and set carry to the string
and mark the column as processed
and POP the goal.

P10 IF the goal is to add a digit to another digit
and a sum is the sum of the two digits

THEN the result is the sum
and mark the digit as processed
and POP the goal.

Pil IF the goal is to add a digit to a number
and the number is of the form "string digit"
and a sum is the sum of the two digits'
and the sum is less than 10

THEN the result is "string sum"
and mark the digit as processed
and POP the goal.

P12 'If the goal is to add a digit to a number
and the number is of the form "string digit"
and a sum is the sum of the two digits
and the sum is of the form "I digit*"
and another number sum* is the sum of I plus string

- THEN the result is "surn* digit*"
and mark the digit as processed
and POP the goal.

Of course the terminology and format used above would not be part of a classroom

instructional model, yet this example illustrates the specificity inherent is strong

methods. That is, the intent of strong methods is to provide a high level of detail

in the facts (declarative information) and processes (procedural information)

necessary to solve different problem types. Ideally a strong algorithm should

provide a student with a solution if the algorithm is followed precisely. The

strength, then of strong methods is their specificity; their weakness is their lack of

generality. That is, a strong method approach to problem solving would require

the identification and teaching of many and varied algorithms for problem solving.

THE STUDY

The intent of the present study was to test the effects of a general problem

solving algorithm on student ability to solve LOGO problems and to determine if

3
6

programming languages such as LOGO have any inherent characteristics which

would make them useful tools for teaching general problem solving strategies. To

do this a production theory approach to problem solving was used. Specifically

Anderson's (1983) construct of a production was used to develop a general problem

solving algorithm. That general production theory problem solving algorithm is

reported below.

1. Identify what is missing: Missing data can take the form of:

a) a missing antecedent in a specific production

b) a missing consequent in a specific production

c) a missing production in a production network

d) a missing network or plan of control within a network

2. Decide whether: a) the missing information can be inferred or b)

outside information should be obtained. If b., exit the problem

solving algorithm and return when information is obtained. If a ask

and answer the question: "In what prior situation have I made a

similar inference?"

3. Test out the inference

4. Determine if the inferred missing data complete the production or

production network.

The model above was considered "conceptual" in that it was intended to

identif y all of the components of a problem from a production theory perspective.

4

The nexi step was to translate the conceptual model into a more student friendly

LOGO oriented framework. That framework is reported below:

Step #1 What does the final product look like?

Step #2 Where are you now?

Step #3 Is there a procedure you have to use?

Step #4 rr yeti don't know a procedure, where can you find one?

Step #5 Try the procedure?

Step #6 Where are you now?

SteP #7 If you are not finished go back to Step #3

This algorithm was tested in a quasi-experimental fashion by presenting it

to students and then determining the extent to which it increased their ability to

solve LOGO problems. For subjects were used for the study --one from each of the

following grade levels 4, 5, 6 and 8. These students were first presented with

standard LOGO problems. All students had received at least four hours of

instruction using LOGO commands. Students were then rated using a Likert scale

(H - M - L) on the following characteristics:

- ability to describe the problem

- ability to identify the procedures necessary to solve the problem

- ability to solve the problem successfully

The results of the Likert ratings for the four students are reported below:

5

Ability to 4th, 8th 5th, 6th

describe problem

Ability to 4th, 6th 5th

identify 8th

Procedures

Ability to 8th 4th

successfully

solve problem

5th, 6th

In addition to the ratings the four students were characterized on the

following way, relative to their problem solving behaviors:

4th grader: jumps into problems, tries solution without much

forethought, does not check the accuracy of his steps.

5th grader: is persistent when working through a problem, takes

time when approaching a problem, can describe why she is

performing certain steps.

6th grader: thoughtful approach to problems, can describe why he

performs certain steps, is persistent, checks results.

8th grader: lack of persistence, tries solutions without much

forethought, becomes discouraged easily.

Students were presented with the algorithm and the process was modeled for

them. Students then practiced using the algorithm on a f ew structured examples.

Students were then asked to use the algorithm when solving a set of LOGO

problems which they worked on independently. After the students had solved the

assigned set, their LOGO problem solving ability was again assessed. The post-

treatment rankings are reported below.

Ability to

describe problem

Ability to

identify 8th

Procedures

Ability to

successfully

solve problems

4th, 8th 5th, 6th

; 4th, 6th, 5th

8th, 4th 5th, 6th

8th. 4th 5th. 6th

There results indicate that there was a slight increase in students' ability to

frame the problems and a slight increase in their ability to correctly solve

problems. However there was no apparent change in their ability to identify the

procedures as processes necessary to solve the problems. These findings were

consistent with the reported changes in problem solving characteristics. That is,

use of the algorithm seemed to increase such general factors as students persistence

and attention to detail but not their ability to identify specific procedures to be

used in solving LOGO problems.

These findings support the importance of domain specific information in

solving problems. Domain specific knowledge "consists of a well-formed semantic

network of valid information as well as strategies for using this information"

(Doyle 1983, p. 168). In other words, to successfully solve LOGO problems,

students must know well the specific procedures and commands within the LOGO

language. This assertion is quite consistent with the research of Heller and Reif

(1984) --namely that without the factual knowledge relative to a content area,

students have little success in acquiring more complex procedures for the content

area.

Given the importance of domain specific knowledge and the apparent lack

of effect of a general algorithm on problem solving ability, it would appear that

more "strong" algorithms should be developed for teaching problem solving. This

would mean that more algorithms would have to be developed for different

problem types. That is, an algorithm or algorithms should be developed specific to

problem solving in LOGO, in BASIC and other languages along with algorithms for

specific types of mathematics problems and algorithms for specific types of science

problems. Although different algorithms have been developed (e.g. Wickelgren in

math and Gowin in science) they do not appear to be specific enough to enhance

problem solving ability.

The results of this study also suggest ways that LOGO problem solving

techniques might generalize to these more specific algorithms. By its nature LOGO

is highly visual, highly recursive and providcs immediate feedback. That is, the

8

manipulation of the TURTLE on the screen provides students with a visual analog

of their thinking. In a sense the movement of the TURTLE can provide a visual

history of the students plans. This is generally lacking in any other type of

problem solving situation.

As reported by Papert (1980), the individual most commonly associates with

the development of LOGO, one of the most powerful aspects of the language is its

recursive nature --the ability to use a set of commands over and over again simply

by making the set of commands a procedure which calls itself. This allows

students to see the long term effects of using a set of commands. This would be

analogous to any problem solving situation in which an individual viewed the

problem as a series of small steps organized into a set which was used repeatedly.

For example, factoring an equation would have recursive components as would

studying the incremental effects of adding one chemical solution to another. The

recursive nature of LOGO then would seem to foster an awareness of the possible

utility of breaking a problem into small steps which can be reiterated.

Finally, LOGO would appear to offer immediate feedback as to the

correctness of a students hypotheses about the effects of various procedures.

Again, this is not the case in most problem solving situations. Quite the contrary,

in most situations a student must apply procedures in a linear fashion with no

feedback as to the effect of the procedures until the problem is finished. Many

times this general feedback (the problem is solved --not solved) offers no

information as to which procedure in a sequence was incorrect.

SUMMARY

The results of this study indicated that a general problem solving algorithm

does not significantly change the problem solving ability uf students as it relates to

LOGO problems. This implies, that a weak,method approaches to instruction in

problem solving has less utility that a strong method approach. However, where

there might not be a truly robust general problem solving algorithm, there might be

components of problem solving that are aspects of most strong methods. These

aspects, might include attention to recursive components and immediate feedback

as to the results of hypothesized procedures. For the reinforcement of these

aspects LOGO appears to be a highly useful teaching tool.

REFERENCES

Anderson, J. (1983) The architecture of cognition. Cambridge, Mass:
Harvard University Press

Doyle, W. (1983) Academic work. Review of Educational Research 53.., 159-199.

Heller, J. & Reif, F. (1984) Prescribing effective human problem-solving processes:
Problem description in physics. Cognition and Instruction, 1.

Papert, S. (1980) Mindstorms. New York: Basic Books Inc.

Poison, P.G. & Jeffries, R. (1985) Instruction in General Problem-Solving Skills:
An Analysis of Four Approaches. In J.W. Segal, S.F. Chipman & R. Glaser (Eds).
Thinj_gcin & Learning Skills, Vol. 1 Hillsdale N.J.: Erlbaum.

